Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.18.22275209

ABSTRACT

Vaccine-induced protection of the population against severe COVID-19, hospitalization and death is of utmost importance, especially in the elderly. However, limited data are available on humoral immune responses following COVID-19 vaccination in the general population across a broad age range. We performed an integrated analysis of the effect of age, sex and prior SARS-CoV-2 infection on Spike S1-specific (S1) IgG concentrations up to three months post BNT162b2 vaccination. 1,735 persons, eligible for COVID-19 vaccination through the national program, were recruited from the general population (12 to 92 years old). Sixty percent were female and the median vaccination interval was 35 days (interquartile range, IQR: 35-35). All participants had seroconverted to S1 one month after two doses of vaccine. S1 IgG was higher in participants with a history of SARS-CoV-2 infection (median: 4,535 BAU/ml, IQR: 2,341-7,205) compared to infection-naive persons (1,842 BAU/ml, 1,019-3,116) after two doses, p<0.001. In infection-naive persons, linear mixed effects regression showed a strong negative association between age and S1 IgG one month after the first vaccination (p<0.001) across the entire age range. The association was still present after the second vaccination, but less pronounced. Females had higher S1 IgG than males after both the first and second vaccination (p<0.001); although this difference was lower after the second dose. In persons with an infection history, age nor sex was associated with peak S1 IgG. As IgG decreased with age and time since vaccination, older persons may become at risk of infection, especially with escape variants such as Omicron.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.05.21264555

ABSTRACT

BackgroundWith COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. MethodsMultiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) with a primary infection and no vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). ResultsThe sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 [≥]14 days after the first dose as compared to those unexposed to SARS-CoV-2 at [≥]7 days after the second dose (p=0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in naive participants. ConclusionsSerological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Breakthrough Pain , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL